十大可靠网投平台:代表作
1. Huijun Fan, Existence of the Self-Similar Solutions in the Heat Flow of Harmonic Maps, Adv, In Math. (China), Vol. 26, no. 4(Notice)
2. Huijun Fan, Existence of the Self-Similar Solutions in the Heat Flow of Harmonic Maps, Sci. China Ser. A 42(1999), no. 2, 113--132
3. W.Y.Ding, Huijun Fan and Jiayu Li, Harmonic Hopf constructions between spheres II, Calc Var 16 (2003) 3, 273--282
4. Huijun Fan, and Juergen Jost, Novikov-Morse theory for dynamical systems, Calc Var 17 (2003) 1, 29--73
5. Huijun Fan, Cauchy Problem of Some Doubly Nonlinear Degenerate Parabolic Equations with Datum a Measure, Acta. Math. Sinica,English series Vol.20 (2004) no. 4, 663--682
6. Huijun Fan, and J. Jost, Conley index Theory and Novikov-Morse theory, Pure and Applied Mathematics Quarterly Vol. 1, No. 4 (Special Issue: In Memory of Armand Borel, Part 3. of 3 ) 939--971, 2005
7. J. Cao, Huijun Fan and F. Ledrappier, Martin points on open manifolds, Trans. Amer. Math. Soc., 359 (2007) 5697--5723
8. Huijun Fan, T. Jarvis and Y. Ruan, Geometry and analysis of spin equations,Comm. Pure Appl. Math.,Vol. LXI,0745-0788 (2008), 44 pages
10. Huijun Fan, T. Jarvis and Y. Ruan, The Witten equation and its virtual fundamental cycle, arxiv: math/0712.4025, 108 pages, book "FJRW theory", in preparation. 20080213150519.pdf
11. Huijun Fan, Yefeng Shen, Quantum ring of singularity $X^p+XY^q$, 20 pages, to appear in Michigan J. Math. 20090213212318.pdf
12. Huijun Fan, T. Jarvis and Y. Ruan, Quantum Singularity Theory For $A_{r-1}$ and $r$-Spin Theory, arXiv:1012.0066v1 [math.AG], 17pages, to appear in ANNALES DE L'INSTITUT FOURIER, Special issue "Geometry and Physics of the Landau-Ginzburg model"
13. Huijun Fan, T. Jarvis and Y. Ruan, The Witten equation, mirror symmetry and quantum singularity theory, arxiv: 0712.4021v4, 80 pages,to appear in Annals of Mathematics,2012 20090213212156.pdf
14. Huijun Fan, T. Jarvis and Y. Ruan, Witten's $D_4$ Integrable Hierarchies Conjecture, arXiv:1008.0927, 19 pages,submitted
15. Huijun Fan, Schroedinger equation, deformation theory and tt* geometry, 114 pages, 2011,arXiv:1107.1290v1 [math-ph] 20110705115728.pdf
16. Huijun Fan, Schroedinger equation, deformation theory and DGBV algebra, in preparation